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Abstract—An analysis is presented for the large deflection of clamped laterally loaded skew plates with
stiffeners paralle! to the skew directions. The governing nonlinear differential equations are derived taking
into account the eccentricity of the stiffeners. A numerical procedure involving the use of integral equations
of beams and the Newton-Raphson method is employed 1o get the solution. Numerical work has been done.
The effect of variation of skew angle and size of stiffener on the behaviour of the stiffened skew plate has
been studied.

NOTATIONS

Ag area of stiffeners in the directions o and B
B, breadth of stiffeners in the directions « and 8
D,. Dy dep}t}{: of stiﬁzer}xers in the directions a and 8
D EWHKI21- %)
ﬁ EIF/{]Z(I _ l'z)} }ﬂexm’al rigidities
E Young’s moduius
E,.Eg Young's moduli of stiffeners in the direction a and 8

I, Iy second moment of the stiffeners about the middie plane of the plate

M, Mg, Moy } bending moments and membrane forces

4
Q ::45((3"5; }non-dimcnsional intensity of lateral load

Q

R bla =aspect r_aztio

Sp a'g(l—v)I(ElL)} N .

Sy or(l- vVER) non-dimensional stresses at points B and T

Ss first moment of the stiffeners about the middie plane of the plate

ualk’ ) o Gimensional inplane di ts
valk non-dimensional inplane displacemen

:”'; }non-dimensional lateral displacement

a, b sides of the plate
b., by spacing of stiffeners in the directions a and 8
h,h thickness of plate
g intensity of lateral load
rpr ratio of volume of deck plate to total volume of deck plate and stiffeners
u, v displacements of the middle plane of the plate in the directions a and 8
w displacements of the middie plane of the plate in the lateral, i.c. z direction
x,y,2 orthogonal co-ordinates
a, B oblique co-ordinates
€, €, ¥y, Strains of the middle surface of the plate in the orthogonal directions x and y
€. €, Yap Strains of the middle surface of the plate in the oblique directions « and 8
¢ included angle
Gy, @y, 7s, stresses with reference to the co-ordinates x and y
O, Og, Top  Stresses with reference o the co-ordinates « and 8
Op, 0r Stresses at points B and T
@ skew angle
v Poisson’s ratio
¢
n

g;z }non-dimensional oblique co-ordinates.

INTRODUCTION

Stiffened plates are extensively used in differeat types of structures. If the stiffeners are closely
spaced, the effect of the stiffeners can be “smeared out™ over the area of the plate and an
analysis can be done by considering an equivalent plate of uniform thickness.
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When the stiffners are orthogonal, the equivalent plate can be treated as orthotropic plate.
But there are situations, where the stiffeners are not provided orthogonally. For example, in the
case of a skew plate, stiffeners may be provided along the skew directions. In this case, the
equivalent plate has to be considered as anisotropic. If the stiffeners are eccentric (with respect
to the plate), the middle surface of the plate will be subjected to inplane stresses even when the
deflections are small. Therefore the eccentricity of stiffeners must be properly taken into
account.

Au et al.[1] have presented an analysis for a laterally loaded rectangular plate with eccentric
stiffeners in orthogonal directions. Mcelman et al.[2] have provided a theoretical analysis for
the buckling and free vibration of eccentricalty stiffened cylindrical shells and flat plates.
Soper(3] has analysed orthogonally stiffened rectangular plates in the large deflections range
when subjected to lateral load. All the above authors have considered an equivaleat orthotropic
plate for their analyses by smearing the effect of the stiffeners and they have used trigonometric
series for their solutions. To the authors’ knowledge there is no literature for the linear and
nonlinear analysis of clamped stiffened skew plate.

Hence in this paper, the large deflection analysis of lateraily loaded skew plate with
eccentric stiffeners parallel to the skew directions is considered. The governing nonlinear
differential” equations are derived taking into account the eccentricity of stiffeners and a
numerical solution is obtained making use of the integral equation method[4, 5.

DERIVATION OF EQUATIONS

The oblique and rectangular co-ordinate axes and the plan of the skew plate with stiffeners
are shown in Fig. 1. It is to be noted that the spacing of the stiffeners is measured in a direction
perpendicular to the stiffeners.
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Fig. 1. Sketch showing the systems of co-ordinate axes and the plan of skew plate with stiffners.

Definition of oblique stresses

In order to include the stresses in the stiffeners in calculating the stress resultants (to be
used in the subsequént derivations), the oblique system of stresses is defined following
Argyris[6). Referring to Fig. 2, the normal stress o, is defined as the force per unit area along
de (i.e.) perpendicular to the a direction. Similarly . is the shear force per unit area along de
but acting along dc. In a similar manner o and 7.g can be defined with respect to df. It may be
noted that the “true stresses” are those given by the orthogonal system shown in Fig. 3,
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Fig. 2. Oblique system of stresses. Fig. 3. Orthognal system of stresses.

whereas the oblique stresses defined are but “psuedo stresses” introduced for the purpose of
convenience in making the derivations.

Relations between the oblique and orthogonal system of stresses
In Fig. 4(a), the wedge OAB is acted upon by stresses in the oblique directions and in Fig.
4(b), the corresponding stresses in rectangular directions are shown. Equating the forces acting
. on the faces AB and OB, the following relations can be obtained.

Oa sec’ @ 0 0 Ox
ag = tan® 8 1 —2tan@}{o,
Tap —-gsecftanfd 0 sech Txy
ie.
{oo} = [Alox} (1

where the subscripts 0 and R refer to oblique and rectangular co-ordinate systems respectively.
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(a) (b)
Oblique Orthogonal

Fig. 4. Stresses in a wedge.

Relations between the strains in the two systems
The relations between the strains in the rectangular and oblique co-ordinate systems can be
stated as follows (vide Morley(7])
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& sec’® tan’@ —tanfsech| (e
Yoy 0 -2tané sec 0 Yob

i.e.
{er} = [CHed}. 2

Stress-strain relations in rectangular co-ordinates
For an isotropic material the stress-strain relations in the rectangular co-ordinates can be

written as follows.
Ox E 1 » 0 €
oyt = a—_—;gs v 1 0 &
Txy 0 0 (1-v)2]lyy

ie.
{on} = [BXen}. ©)]
Stress-strain relations in the obliqgue system
Making use of eqns (1)-(3),
{oo} = [Al{on} = [AU BHex} = [ANBUCles} = [DHed} (say) @
L.e.
{:.} __E :;n :u :u {&] "
1'.: (1= da: d: d: ‘::a
in which
du = sec 0; di2 = sec’ (v + cot’ 0)
dy=—tanfsec’d; du=dn
dn=du; dn=dy
dy = dus; dn=dx
and

dy = tan® 0 sec? 8 + {(1 - v)/2} sec? 6.

Strain-displacement relations
When the lateral deflections are large compared to the thickness of the plate, the strain
displacement relations are
€=U+ (Wa)f2
& =vg+(ws)'f2 (6a—<)
Yep = U+ Vat WaWg.
Following Kirchoff's assumptions the strains at any point with distance z from the middie
surface of the plate can be written as
€(2) = €a— ZW,aa
€g(2) =€ —zw s (Ta~c)

Yap(Z) = Yog — 22W ap.
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Expressions for stress resultants
With the help of the relations derived earlier, it is now possible to express the stress
resultants in terms of the displacements of the middle surface of the plate as follows.

N.=£Za.dz+-’;l:LE.€.(z)dA
Np=f:apdz+-5l;LE,ep(z)dA

A2
N.9=Np. =fm‘r.pd2
(8a-f)

W2
M, =f TaZ dz+ij Eqe.(2)2dA
—h2 bc s

N2
Mg = I opzdz +l Epep(2)z dA
N2 bg

A2
M..5=Mp.=f 1282 d2,
w2

where S indicates that the integration is to be performed over the cross sectional area of the
stiffener.

In the case of N,g, the horizontal shear stresses in the stiffener have been neglected in
comparison with those in the plate. Similarly, in determining Mg, the contribution from the
stiffener has been ignored since the stiffeners are considered to be siender and open-web type.

Equations of equilibrium
Considering an element of the plate, the equations of equilibrium of forces in the a, 8 and z
directions can be written as follows:
Noo+ Nopgpg=0
Npg+ Naga =0 (%a-c)
Moo +2Mopop + Mpgp = ~ @ — [NaW .o + 2NegW o8 + NpW gg].

Substituting eqns (8a-f) in eqns (9a—c) and using the non-dimensional quantities given under
notations, the equations of equilibrium can be expressed as follows.

alUg+arUg+asUmtaiVgtasVg+acVap+arWe

=[lauWeg+anWeo+ ayuWelWet[auWe+anWey+anWae,l1W, (10a)
biUg+biU gy + bsUgn +baV g+ bsV gy + bV + D1 W
=[by Wg + bn W_g., + by, u’,vm] W,f + [b,ng + by W.h + bzz“’,“] “’,', (10b)

CiWes + C2:Wggen+ C3Wgtnn + CaWegan + CsW g + CeU gt + €7V
= Q+lenUs+ clUa+ csVie+ cuVa+ ars(Wel + el WeX Woa) + crd Wa) 1 W
+lenUg+cnUqg+cnVe+ cuVa+ cas(Wel + Cos Wel W) + cA W))Wy
+lenUg+cUn+cnVetcuVat+os(We)'+ (W + e (Wa) W (100)

The coefficients ai, b;, ¢; etc. are given in Appendix A.
Boundary conditions

The plate is assumed to be clamped and rigidly held in position along the edges. This
boundary condition may be stated as:
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(a) along £=0,1; W=W,=U=V=0
(b) along n=0,1,; W=W,=U=V=0.

(11a,b)

Method of solution

Considering discrete points along lines parallel to the skew co-ordinates, a numerical
solution to the differential equations satisfying the boundary conditions can be obtained by the
integral equations method[4, 5].

Let the highest derivatives of W be denoted by

Weae=k(£n); Wam =1 7). (12a,b)

For points along the line 7 = 7, (Fig. 1), eqn (12a) can be represented as

1
W& 1) = L 806, ¥ T )k(; ) W0 (13)

where g(¢ ¢; n,) is the Green’s function of the boundary value problem W e =0 with the
boundary conditions W= W,=0at §=0,1.

The integration indicated in eqn (13) can be performed as summation using Simpson’s rule
and the above equation can be represented in matrix form. Consideripg various lines parallel to
£ axis, they can be combined and written as

{W}=[Al{k}. (14)
Similarly considering lines parallel to » axis, eqn (12b) can be expressed as
{W*}=[BKI*} (1%

where * indicates that the discrete points are reckoned along lines parallel to n axis. Making use
of a unitary transformation matrix [T] such that

{W*=[TKW}, {I*}=[TX} (16a,b)

{W}=[T1"{(W*} =TT '(BHI*} = [T) ' [BUTK} = (BK1}. an

Using derivatives of Green's fuactions one gets

{Wel=[Adk}=[AJATKW}
- . (18a,b)
{Wa}=[B.HI}=[B.IB~"{W}
giving

2 A 2 (B
ag'[A‘][A ] and p (BalB™).

Now any derivative of W can be expressed in terms of the single unknown {I}.
For example,
{W.aem} = [A A B.om K1}
{Wen} = [AlA™ B K1}
An inspection of eqns (10a—c) reveals that the order of the highest derivative of U and V is

three and these terms result as a consequence of the eccentricity of the stiffeners. In general,
for boundary value problems, the order of the highest derivative is even, say 2a, such that n
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boundary conditions can be specified at either end. Therefore, in this case the third derivative
cannot be taken as the unknown, Instead, the second derivative is considered as the unknown
and the relevant boundary conditions are satisfied. The values of the third derivative at the grid
points are obtained from the values of the second derivatives. This is done by fitting a suitable
curve and finding its gradient at the grid points. In this investigation a 4th degree curve is fitted
considering five grid points at a time and the derivatives are found therefrom. Thus

Ugel=1D,
and {Ukeel =1 .d{ Ug} (19, b)
{V.omn} = [DaH{V o}

where [Dj] is the matrix to obtain third derivatives from second derivatives, [Dy] = [T]'[D)[T)
and [T} = unitary transformation matrix.
Assuming

Um=s(En); Vam=n ), (20a,b)

making use of Green’s functions appropriate to the boundary conditions in question and
following a procedure similar to the one adopted for W, it is possible to express any derivative
of U and V in terms of s and n respectively,

The differential eqns (10a—c) can now be converted into algebraic equations in matrix form
as follows:

[Ailis}+ [Az2){n} = {Ri}
[B:i){s}+ [B2}{n}={R2} (21a~c)
[CHI}={Q}+{Rs} * {R}+{Rs} * {Re} +{Rs} * {Re} +{Ro} +{Ruo}
where
{Ri}=[M}l};  {R}=[M:KI}; ... {Re}=[M:s{l}
{Ro} = [Msl{s};  {Rio} = [MicKn}
{Q} = the load vector.

The * muitiplication in the above equation is defined as follows.

{C}={A} » {B}
means

Ci=ab;  (no sum on the index i).

The matrices A;, Bi, Ci, M, etc. are appropriate rectangular matrices.
A solution to this set of nonlinear algebraic equations is obtained by using the Newton-
Raphson procedure (S5, 8].

RESULTS AND DISCUSSIONS

Numerical results have been obtained for a limited data in order to show the workability of
the formulation and computer program. In preparing the computer programs, advantage has
been taken of the skew symmetry and skew anti-symmetry of the vectors {/}, {s} and {n} in
order to reduce the size of the matrices and save computer time.

At any value of the load, the Newton-Raphson iterations are continued till the results
converge. For this purpose, the defiection at centre is used as the criterion. If the values of
central deflection in two consecutive iterations do not differ by more than 0.01% of their value,
then the iterations are terminated. The gradient calculated for any load is used for a few more
load increments until its accuracy becomes poor as indicated by the increase in the number of
iterations required for convergence. The gradient is updated when the number of iterations
exceed 10.
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Considering an element of the skew plate with stiffeners (Fig. 1),

{volume of deck plate per unit area)
(total volume of plate and stiffeners per unit area)

h
h

where & = h +(Adba) + (Ag/bg).

It may be verified that if rpr = 1, it represents a plate without stiffeners. A value of rer <1
indicates that part of the material from plate is removed and placed as stiffeners. However the
total volume per unit area remains the same for all values of rer. Thus by varying rer, it is
possible to get plates with different allocations of volumes between deck plate and stiffeners. In
this paper it is proposed to study the change in the behaviour of the plate by varying rer and
this can be done by changing the dimensions of the stiffeners (viz) width, depth and spacing. In
order to limit the number of variables, the spacing and depth of stiffeners are taken as constant
multiples of the thickness of the deck plate and width of the stiffener respectively.

Let the width, depth and spacing of stiffeners in “a” direction be Buwhk, Dah and b.h
respectively.

Assuming that identical stiffeners are provided along both the skew directions,

1

T 2 Barelbal

where rpg = Duht/ Bas.
Therefore the width of the stiffener corresponding to a given value of 7pr can be determined
as

Bax = [(1/rer) = 1) banl(2r08))-

From the governing eqns (10a-c) it can be inferred that the solution for displacements and
stresses will be obtained in terms of A, the thickness of the deck plate. However it will be
convenient for purposes of comparison, if these quantities are expressed in terms of a constant
thickness. For this purpose, h, the thickness of the equivalent plate of uniform thickness having
the same volume is taken as the reference.

For each case, in addition to the deflection at centre, the normal stresses (in the direction of
stiffeners) at the centre of the plate corresponding to B, the bottom of the stiffener and T, the
top of the deck plate (see Fig. 6 and 7) have also been caiculated.

Convergence study

For a plate with §=45°, R=1 and rer =0.67, the results of a convergence study are
presented in Table 1, for three values of the load parameter @, which cover both linear and
nonlinear ranges. For all the three loads, the convergence can be seen to be good.

Table 1. Conovergence study, 8 =45°; R=1; ¥ =0.3; rpy = 0.67.
Mesh Q=259 Q = 55636 _ Q=169436

M N w Ss Sr W S Sr w Ss Sr

14 9 0058 2221 -0787 1005 467 -108 1843 T8 1183
16 25 0059 222 -0805 1039 3843 -1000 1969 7050 -9.38
I8 49 00595 2218 0802 1034 3833 ~971 2000 6993 -9.13

Note: Mesh size = M X side; N = Number of interior mesh points.

Small deflections

The linearised forin of eqns (10a—c) will correspond to the case of small deflections theory
and a solution to the vectors {I}, {s} and {n} can be obtained by solving these simultaneous
equations.

For the value of R = 1, deflection and stresses at centre have been obtained for plates with
8 = 0°, 30° and 45° for different values of the ratio rer. These results are shown in Figs. 5-7. The
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Fig. 5. rpr vs deflection at centre.
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values of rps and b.s have been taken as 4 and 16 respectively and E, = Eg = E of the plate.

As the value of rpr is decreased from 1.0, i.e. by putting more and more material in the
stiffeners, the deflection reduces considerably, the reduction being the maximum for 6 = (0°.

In Fig. 6, initially there is an increase in the stress at B, as rpr is decreased from 1.0 to about
0.9. Thereafter the stress decreases with decrease in rer. In the case of 8 = 45°, for all values of
rer <1, the stress at B is found to be higher than the corresponding value for the plate without
stiffeners, i.e. for rer = 1. However, for 8 = 0° (and 30°), a value of rpr <0.68 (0.58) represents a
plate for which both deflection and stress at centre are less than the corresponding values for a
plate without stiffeners but having the same volume.

At rer = 0.5, there is no appreciable difference in the deflection for the different values of
the skew angle. This is also true with regard to the stresses. This might be due to the fact, that
for this value of rer, the structure behaves more like a grid.

Large deflections

Figures 8-10 show the graphs of Load vs Deflection at centre, Figs. 11~13 the graphs of
Load vs Stress at B and Figs. 14-16 the graphs of Load vs Stress at T. With reference to these
figures the following observations can be made.

(1) When the load is small (see Fig. 8), for any value of the load, the deflection decreases as
rer is decreased from 1.0. This is because the plate with more material in the stiffener is stiffer
than the one with less material in the stiffener. This trend can be observed in Fig. § also.

(2) Whereas, when loads are larger, inplane forces are developed and hence the deflections
are reduced. These inplane forces are developed at an earlier stage of loading process for a
plate with less material in stiffener. Therefore, for large loads, it can be seen that the deflection
increases as rpr is reduced from 1.0—a phenomenon just the reverse of what happens when the
load is small. This behaviour can be clearly seen in Fig. 10 for 8 = 45°. For the other two values
of 8 =0° and 30° also, similar trend can be observed in Figs. 8 and 9.

(3) Comparing Figs. 8-10, it can be noted that the variation in the deflection (for different
values of rer) decreases as the skew angle is increased.

2.8

0 | | | | l |

0 2 4L 6 8 10 12 3 1%
a ={qb‘nbﬁ)} x10

Fig. 8. Load vs deflection 8 = 0°,
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(4) At B, the membrane and bending stresses are both tensile and hence they add up.
Whereas at the point T (Figs. 14-16), initially for small loads, the stress is compressive. But this
stress decreases due to the tensile inplane forces and for large loads, this stress becomes
tensile.

CONCLUSIONS

In this paper the analysis of stiffened skew plate, a hitherto unsolved problem, has been
done. The effect of the variation in the size of the stiffener and skew angle has been studied. It
is believed that this will throw more light to have a better understanding of the stiffened skew
plate.
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APPENDIX A

Coefficients in eqns (10a~c)

a; = [sec* 0 + {AE /(b EMX1 - »HIR?
ay= [~ 2tan # sec’ 8]R
as= sec’ fftan’ 6 + (1 - »)f2]
a=~R*tan @ sec’ 6
as = sec’ O[tan’ 0 + (1~ »)f2+ (v +tan’ O)IR
ae=—tan#sec’ 8
ay=~ E.S,(1- V)(Eb,h%)
ay =~ [sec’ 0+ AE,(1 - V(b ERR?
an=2Rtandsec’d
ay = —sec’ 8[tan’ 8+ (1~ »){2}
8y = R tan 8 sec’ ¢
8 = - sec? O[v + 2+ tan’ 6 + (1 - »)f2)
a3 =tan @ sec’ R
by=-R'tandsec’s
by=sec® B[ + 2tan® 6+ (1 - »)/2IR
by=—1tan 6 sec’
by= sec® Oftan’ 6+ (1~ 1)/ 2R*
by=~2Rtan sec’ §
b =sec* 8+ [AgEa(1 - v)(b,ER))
by = - EgSs(1~ v)I(Ebgh’R)
by=Rtangsec’ s
by = —sec’ 8lp+2tan’ 8+ (1 - »)/2IR
by, =tan@sec’ 8
by = —sec’ Oftan’ 8 +(1 - »){2IR
bp=2tandsec’
by = —[sec* 0+ ApEs(1 ~ ¥)(bsER)IR
= {sec* 8+ 12(1 - W)E, LI(Eb i )R

¢3=—4R1an 0 sec’ ¢
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cy=2sec’ 01 + 3tan’ §R?
¢y=~4R tan 0 sec’ §

cs=sec* 8 +(12(1 - ') Eglyl(Ebgh®)}
¢ =~ [1201 - V) E,SJ(Eb AR
&=~ {12(1 = V)EpSyl( Ebgh™)IR

oy = 12[sec’ 8+ {1 - »)AEJib hEVIR'

en=-12Rtan0sec’ 4

cn=-12R"tan §sec’ ¢

¢1a= 12R’ sec’ 8(v + tan’ )

15 = 6fsec’ 0+ A E. (1 - ¥)(bER)IR*

€16=~12R*tan 0 sec’ §

cr=6R sec’ f(v + tarfz #

ey =~24R tan # sec’ @

= UR" sec’ d{tan’ 9+ (1 - v)f2)

en = 4R" sec’ #{tan’ § + (1 - »)f2]

c=~24R*tan @ sec’ ¢

c2s= - 12R tan  sec’ 9

2= 24R? sec’ 0(tan’ 8 + (1~ 1)2)

cn=-12Rtan 0 sec’

on = 12R sec’ 8y + tan* )

cn=-12Rtandsec’ 9

ey =~ 12R tan § sec’ ¢

3= 12R{sec* 8 + (1 ~ V) AgE(bphE)}

c35 = 6R? sec’ §(v + tan” 9)

C36= = 12R tan @ sec’ 8

31 = 6[sec’ 0+ (1 - ¥) AgEpl(byER)]
= 12(1 - V)E,S,J(bER®)

o5 = 1201 ~ P ESylb,ERD).



